
Part B: Heat Transfer Principals in Electronics Cooling 
 

 
30MPE 635: Electronics Cooling 

 
 

6. Transient Conduction 
 

In this lecture we will deal with the conduction heat transfer problem as a time dependent problem in 
order to investigate the heat transfer behavior with time. Similarly as in the steady state conduction 
our aim is to obtain the temperature distribution and heat rate through our field of study and this could 
be obtained using the same procedure followed for the steady state conditions, we have to solve the 
appropriate form of heat equation and also for simplicity we may use some approach for simpler cases 
as we are going to discuss. 
 
 
6.1 The Lumped Capacitance Method  
 
The approach of the lumped capacitance method is based on the assumption that the temperature 
gradient across the media is small. For example, consider a spoon at initial temperature Ti then it is 
suddenly immersed in a cup of hot tea at temperature T∞ which is higher than Ti, if the spoon 
immersion starts at time t = 0 the temperature of the solid will increase as t > 0 until at some time it 
reaches T∞, this increase in temperature is due to convection heat transfer at the solid – liquid (spoon – 
Tea) interface. The lumped capacitance method is based on the assumption that the temperature is 
spatially uniform at any instant during the transient process so that the temperature gradient maybe 
considered negligible. 
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The above form of Fourier’s law implies that the thermal conductivity is infinite at approximately 
zero temperature gradient. 
 
After the pervious assumption it is no longer possible to consider the problem from the framework of 
the heat equation, therefore to obtain the transient temperature response we should apply the overall 
energy balance on the solid (spoon) and this balance connect the heat gained by the increase in 
internal energy. Through the equation  
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The energy flowing into the solid (spoon) is due to convection as we mentioned before and it is 
expressed as  
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Then by equating the last two equations we get  

dt
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Introducing the temperature difference θ 

TT −= ∞θ  
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Differentiating the above equation we get that dT/dt = - dθ/dt, Substituting in Equation 6.5 and 
rearranging the equation we obtain 
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By separation of variables and integration from the initial condition at t = 0 and T (0) = Ti, we get 
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Where θi = T∞- Ti 
 
The fraction θ/ θi can be obtained by rearranging Equation 6.8 such as 
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Equation 6.9 could be easily used to determine the temperature T reached after a given time t or the 
time t needed to reach a certain temperature T.  The coefficient of t inside the exponential function 
may be regarded as a thermal time constant. Hence, the thermal time constant can be defined as 
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Where Rt is the convection resistance to heat transfer and Ct is the lumped thermal capacitance of the 
solid. This new term is an indication to the material response to the change in thermal environment. 
As this constant increases the response time of the material to thermal changes decreases. An analogy 
between these types of heat conduction problem can be made. This analogy is shown in Figure 6.1 
below. 
 

 
Figure 6.1 Analogous Electric circuit to a transient heat conduction problem 

 
The amount of heat transferred from time t = 0 till a certain time t can be calculated by integrating the 
convection heat transferred from time t = 0 till a certain time t. this is simply shown in Equation 6.11 
as 
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Substituting for θ from Equation 6.9 and performing the integrating Equation 6.11 yields 
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The amount of heat transferred Q is that taken or gained by the internal energy. So that Q is positive 
when the solid is heated and there is a gain in the internal energy and Q is negative when the solid is 
cooled and there is a decrease in the internal energy.  
 
 
6.2 Validity of the Lumped Capacitance Method 
 
Lumped capacitance method is very desirable due to its simplicity and convenience. However, it is 
important to determine under what conditions it should be used in order to yield reasonable accuracy. 
 
To develop a suitable criterion consider a steady state conduction through the plane wall of area A, as 
seen in Figure 6.2, where one surface is maintained at temperature Ts,1 and the other is exposed to a 
fluid of temperature T∞ where Ts,1 > T∞. The surface temperature, Ts,2, has a value between Ts,1 and T∞ 
is called, thus under steady state conditions the surface energy balance will be 
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Rearranging the Equation 6.13 we get  
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The quantity (hL/k) appearing in Equation 6.14 is a dimensionless parameter called Biot number. This 
number plays a fundamental role in conduction problems involving surface convection effects. If Biot 
number is less than unity, then the conduction resistance within the solid is much less than the 
convection resistance across the boundary layer. Thus the assumption of a uniform temperature 
distribution is reasonable.  Hence, the lumped capacitance method could only be used if: 
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Where Lc is the characteristic length of the solid shape and for more complicated shapes it can be 
defined as Lc ≡ V/As for simplicity and the characteristic length Lc is reduced to L for a plane wall of 
thickness 2L  and to ro/2 for a long cylinder and ro/3 for a sphere.  
 
When substituting with the characteristics length Lc ≡ V/As in the exponent of Equation 6.9 we get the 
following simplification 
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Or  
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Where a new parameter, called Fourier number, is introduced which is a dimensionless time 
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Substituting from Equation 6.17 into Equation 6.9 we get 
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Figure 6.2 Biot number effect on steady state temperature distribution 
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Figure 6.3 Transient temperature distribution for different Bi numbers in a plane symmetrically cooled 
from the two sides by convection 

 
Exercise 6.1: A thermocouple junction, who may be approximated as a sphere, is to be used for 
temperature measurement of cooling air stream for electronic box. The convection coefficient between 
the junction and the air is known to be h = 400 W / m2 K. The junction thermophysical properties are: 

k = 20 W / m · K 
c = 400 J / kg · K 
ρ = 8500 kg / m3 

Determine the junction diameter needed for the thermocouple to have a time constant of 1 s. 
If the junction is at 25 ºC and is placed in air at 15 ºC, how long would it take for the junction to reach 
16 ºC? 
 
 
6.3   Spatial Effect 
 
The transient conduction problem in its general form is described by the heat equation either in 
Cartesian, cylindrical or spherical coordinates. Many problems such as plane wall needs only one 
spatial coordinate to describe the temperature distribution, with no internal generation and constant 
thermal conductivity the general heat equation has the following form 
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Equation 6.20 is a second order in displacement and first order in time; therefore we need an initial 
condition and two boundary conditions in order to solve it. Following are some graphical solutions for 
simple cases. 
 
6.3.1 Large Plate of Finite Thickness Exposed to Convection  
In this case the initial condition is: 
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 And the boundary conditions are  
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Dimensional analysis is a very useful method when the problem involves many variables as it reduces 
the variables being involved into groups and provides mathematical relations between them 
 
For this reason, two dimensional groups are used in the graphical solution of the one dimensional 
transient conduction, the two groups are the dimensionless temperature difference θ* = θ / θi and the 
dimensionless time Fourier number t* = Fo = α t / Lc

2 and the dimensionless displacement x* = x / L. 
Solutions are represented in graphical forms that illustrate the functional dependence of the transient 
temperature distribution on the Biot and Fourier numbers. 
 
Figure 6.4 may be used to obtain the midplane temperature of the wall, T (0, t) ≡ Ta (t), at any time 
during the transient process. 
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If To is known for particular values of Fo and Bi, Figure 6.5 may be used to determine the 
corresponding temperature at any location off the midplane. Hence Figure 6.5 must be used in 
conjunction with Figure 6.4. For example, if one wishes to determine the surface temperature  (x* = ± 
1) at some time t, Figure 6.4 would first be used to determine To at t. Figure 6.5 would then be used to 
determine the surface temperature from the knowledge of To. The procedure would be rolled back if 
the problem involves determining the time required for the surface to reach a prescribed temperature. 
 

 
Figure 6.4 Midplane temperature as a function of time for a plane wall of thickness 2L 

  

 
Figure 6.5 Temperature distribution  in a plane wall of thickness 2L 

 
Graphical results for the energy transferred from a plane wall over the time interval t are presented in 
Figure 6.6. The dimensionless energy transfer Q/Qo is expressed exclusively in terms of Fo and Bi. 
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The foregoing charts may also be used to determine the transient response of a plane wall, an infinite 
cylinder, or a sphere subjected to a sudden change in surface temperature. For such a condition it is 
only necessary to replace T∞ by the prescribed surface temperature Ts, and to set Bi-l equal to zero. In 
so doing, the convection coefficient is tacitly assumed to be infinite, in which case T∞ = Ts. 
 

 
Figure 6.6 Internal energy change as a function of time for plane wall of thickness 2L 

 
Similarly for the infinite cylinder the results are presented in Figures 6.6 to 6.8  only the Lc is replaced 
by ro then Bi-1 = k / h ro. 
 

 
Figure 6.6 Centerline temperature as a function of time for an infinite cylinder of radius 

ro 
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Figure 6.7 Temperature distribution  in an infinite cylinder of radius ro  

 

 

 
Figure 6.8 Internal energy change as a function of time for an infinite cylinder of radius 

ro  
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Figure 6.9 Center temperature as a function of time sphere of radius ro  

 
 

Figure 6.10 Temperature distribution  in a sphere of radius ro  
 

 
Figure 6.11 Internal energy change as a function of time for a sphere of radius ro 
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6.4   Semi-Infinite Solids 
 
Another simple geometry for which analytical solutions may be obtained is the semi-infinite solids it 
is characterized by a single defined surface since it extends to infinity in all directions except one. If a 
sudden change is imposed to this surface transient one dimensional conduction will occur within the 
solid. 
 
Equation 6.20 still applies as a heat equation. Under the same assumptions which is one dimensional 
with no heat generation heat transfer. 
 
The initial condition is 

iTxT =)0,(  
 

While the interior boundary condition is 
iTtxT =∞→ ),(  

 
for the above initial and interior boundary conditions three closed form solutions have been obtained 
for the surface conditions, which are applied suddenly to the surface at t = 0. These conditions include 
application of constant surface temperature, constant heat flux and exposure of a surface to a fluid 
characterized by T∞ ≠ Ti and the convection coefficient h, as shown in Figure 6.12. 
 
For each case, an analytical solution can be obtained as: 
 
Case (1) Constant surface temperature:  iTtT =),0(  
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Figure 6.12 Transient Temperature distribution in a semi-infinite solid for three surface 
conditions: case (1) constant surface temperature, case (2) constant surface heat flux, and 
case (3) surface convection 
 
 
 
Case (2) Constant surface heat flux: os qq ′′=′′  
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Case (3) Surface convection:  )],0([/
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Where the complementary error function erfc w is defined as erfc w = 1- erf w. 


